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ABSTRACT

The primary goal of good project risk management should be to successfully deliver projects
for the lowest cost at an acceptable level of risk.  This requires the systematic development
and implementation of a set of Risk Response Actions (RRA) that achieves the lowest total
project cost for a given probability of success while meeting technical performance and
schedule.  This work presents a practical and mathematical sound approach for determining
this "efficient RRA set".   It is built on the portfolio selection concepts that Markowitz
developed to determine the optimal investments for investors with differing aversions to risk.
The set of RRAs is treated as whole and not just individual risks.  Several conceptual and
modeling differences are introduced to properly treat technical risks.  The efficient RRA set is
based on  "Outcome Cost Vs Probability of Success" rather than "Expected return Vs
Variance of return".    The risks and RRAs are characterized using scenarios, decision trees,
and cumulative probability distributions.   The computations are performed using Monte
Carlo simulation.  The analysis provides information that enables decision-makers to select
the efficient RRA set that explicitly takes their attitude toward risk and project risk into
account.  The computations are readily performed with commercially available tools such as
Excel add-ins.  The approach is detailed using a realistic but simplified case of a project with
two independent risks.
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1. INTRODUCTION

In today's highly competitive environment and limited resources, the project manager1 needs
to (1) bid low enough to win the project but high enough to ensure that the project is a
success, and (2) once the project is underway, judiciously manage the technical and
managerial risks. Project risks can be categorized as technical and managerial; but the two are
interrelated [Dillon and Paté-Cornell, 2001].  Technical risks are primarily associated with
uncertainties in technology, performance, design, manufacturing, and integration.  Managerial
risks are associated with staff and management experience, inadequate schedule and budget,
and programmatic issues. The unavailability of budget contingencies when needed results in
schedule delays that further increase cost, scope changes, and/or project cancellation.  It is no
longer sufficient to just manage risk, the successful project manager must manage risk
efficiently.

The present work focuses on the analysis and management of technical risks and presents an
approach to balance risk, cost, performance, and schedule through the systematic
development and implementation of Risk Response Actions (RRA).  The selection of RRAs
constitutes an important tradeoff between how much to invest in the RRAs versus the level of
risk to be assumed [Hillson, 1999].  The proposed approach is designed to meet the following
objective:

� Determine the set of RRAs that either (1) maximizes the probability of success for a given
total project cost, or (2) minimizes the total project cost for a given probability of success.

We refer to such a solution as the "efficient RRA set."  It has important implication for
contingency management.  If the RRA set is efficient, it is impossible to establish a smaller
contingency without giving up some probability of success.

Numerous generic and statistical cost-risk models have been developed that use contingency
factors [U.S. Department of Energy], cost estimating relationships [Parametric Estimating
Handbook, 1999], and risk factors using the Analytical Hierarchy Process [Graham and
Dechoretz, 1995]. These approaches provide a broad rather detailed view of project risks, and
consequently they do not provide the technical project manager with adequate guidance for
selecting an "efficient set of RRAs".  Serious questions have also been raised about the
domain of applicability of the AHP [Watson and Buede, 1987: 78].  Empirical studies
[Shapira, 1995: 51] confirm that technical project managers want valid information rather
than simplicity when making high-risk decisions. Chapman, Ward, and Bennell [2000]
observe that decision-makers want "applied models that facilitate effective interventions"
rather than inadequate theoretical models. The proposed approach by explicitly dealing with
the RRAs and providing techniques for determining the efficient RRA set technically
addresses these needs.

We build on the following Markowitz' basic "efficient portfolio selection" principles:
1. A good portfolio is more than a long list of good stocks and bonds. It is a balanced whole,

providing the investor with protections and opportunities with respect to a wide range of
contingencies [Markowitz, 1976: 3].

                                                          
1 The specific title of this role depends on the organization.
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2. The security which is risky or conservative, appropriate or inappropriate, for one portfolio
may be the opposite for another.  One must think of selecting a portfolio as a whole, not
securities per se.

3. The efficient portfolio provides the most suitable combination of risk and return
[Markowitz, 1976: 7].

4. The proper choice among efficient portfolios depends on the willingness and ability of the
investor to assume risk [Markowitz, 1976: 6].

These principles are powerful and apply to areas beyond portfolio selection.  By simply
changing the actors and objects, these principles transfer directly to project risk management.

But, we also need to modify some of Markowitz' techniques and introduce conceptual and
modeling differences to properly treat technical risks.  Specifically:
1. We define the efficient RRA set based on  "Outcome Cost Vs Probability of Success"

rather than "Expected return Vs Variance of return (E, V)".
2. The computation of the efficient RRA set requires evaluating discrete combinations of

RRAs rather than the fraction invested in the jth security.  We do not implement
Markowitz' computing procedures  [Markowitz, 1976: Chapter 8 and Appendix A].  We
use Decision Trees (DT), Monte Carlo simulation, and cumulative risk profiles.

3. We assume that there is no correlation among the individual risks.  This approximation
avoids the complex and unfamiliar task of modeling factors that are common across a
project and increase the tendency of some risks to move up and down together.  The
validity of the assumption depends on the application.  It is not valid for security
portfolios [Markowitz, 1976: 97]:  "Covariances are essential to an analysis of efficient
portfolios."

The proposed approach for determining an "efficient set of RRAs" offers the following
benefits:
� It allows for explicit modeling of project outcomes using both discrete and continuous

probability distributions.
� It provides complete information and visibility into the possible outcomes and selection of

RRAs.
� It supports the decision-makers' attitude toward risk and how they make real decisions.
� It determines the lowest contingency cost required as a function of the assumed risk level.
� Technical project managers should find it both useful and practical for sound decision-

making and optimization of project success.
� It can be implemented using commercial Excel� add-ins  (@Risk�, Crystal Ball�, and

Insight.xla�)2 and/or more specialized tools such as DecisionPro�.

The content of the paper is as follows.  In the Introduction we presented the rationale behind
the proposed approach, some of Markowitz' portfolio selection principles, and how we
propose to apply them to the analysis and management of technical risks.  In Section 2 we
describe the use of scenarios to elicit risk information and risk profiles to characterize risk.  In
Section 3 we present the modeling and analysis of individual RRAs using the data from
Section 2 as input.   In Section 4 we build on Markowitz' efficient set and develop an
analogous paradigm for the selection of RRAs.   The concepts of Sections 2, 3, and 4 form the
basis upon which we select an efficient set of RRAs and determine an optimal total project
cost contingency.  In Section 5 we extend and apply these ideas to projects with multiple
                                                          
2 This list is representative and not exhaustive.
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risks.  In Section 6 we summarize the implications of the proposed approach to the
management of technical risks. The appendices provide additional details on modeling
(Appendix A), the illustrative example (Appendix B), and a brief look at the mathematics of
discrete distributions (Appendix C).
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2. MATHEMATICAL MODELS FOR QUANTIFYING TECHNICAL RISK

2.1.   Risk Profile

A full characterization of risk requires specifying the following four elements: the possible
events, their probability of occurrence, the range of impacts or outcomes associated with each
event, and the conditional probability of each outcome given that the event has realized
[Chapman and Ward, 1996].  It can be graphically represented in multiple ways, and in this
work we use the following representations (See Appendix A for details):
1. Standard event trees using discrete outcomes.
2. Modified event trees where probability distributions rather than discrete branches are

associated with the chance nodes.  This provides the capability way to model continuous
outcomes.

3. Simulation models that can be readily implemented using commercially available tools
(See Section 1).

2.2.   Using Scenarios to Quantify Technical Risk Contributors

Scenarios [Chapman and Ward, 1996] provide a convenient technique to elicit the judgment
of experts about probabilities and consequences of project technical risks.  In the proposed
method, we explicitly evaluate each risk contributor using three scenarios and a variation of
the fractile method [Haimes, 1998] as follows:
1.  Optimistic scenario or 20th percentile of outcomes - It represents a credible upside scenario
with a perceived probability of 20% (one chance in five) that the outcome will be better.
Statistically, it is the 20% lower-confidence interval on the outcome.
2.  Pessimistic scenario or 80th percentile of outcomes - It represents a credible downside
scenario with a perceived probability of 20% that the outcome will be worse. Statistically, it
is the 80% lower-confidence interval on the outcome.
3.  Most-likely scenario - This characterizes an intermediate outcome or range of intermediate
outcomes with the highest perceived likelihood of happening or mode.  This is often
associated with the traditional point estimate.

We use the "one chance in five" outcomes because these values are not too extreme and their
use in place of upper and lower bounds assists the domain expert by raising useful questions
of what could go wrong with the project baseline.  Different levels of probability could be
used [Markowitz, 1976: 32].  By specifying three outcomes and associated probabilities, the
experts are able to encode their level of confidence for the possible outcomes. This data can
be reported either in tabular form or graphical form.

2.3.1 Discrete versus Continuous Probability Distributions

Cost and schedule exhibit a continuous range of outcomes.  For this reason and possibly
greater familiarity, analysts may opt to approximate the scenario data with continuous
probability distributions.  Depending on the statistical characteristics they want to capture,
there is a multitude of ways to use a continuous probability distribution to approximate a
three-point discrete distribution.  Popular parameterizations include the triangular and beta
distributions [Garvey, 2000].
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2.3.1.  The Standard Triangular Distribution
The standard triangular distribution elicits the lower, most-likely, and upper values of the
variable from the domain expert.  It does not explicitly solicit the experts' level of confidence
in any of these values.  Furthermore, the specification of upper and lower bounds for the
range of possible outcomes rarely provides useful guidance for decision-making under risk.
In contrast, the proposed scenario-based approach by eliciting the 20% and 80% confidence
level values rather than extreme values captures the degree of belief and confidence of the
experts.  It also provides a framework for using beta distributions, if so desired.

2.3.2.  The Beta Distribution
The beta distribution, denoted by Beta(α, β, a, b),  is  very attractive for use in risk analysis
[Garvey, 2000].  It is defined over a finite range  [a, b] with a shape characterized by two
parameters α and β.  Depending on the shape parameters it can assume a variety of both
symmetrical and asymmetric shapes: uniform (α=β=1), bell-shaped (α, β > 1), U-shaped
(α, β <1), right-skewed triangular (α=1, β=2), left-skewed triangular (α=2, β=1). The expert
can select the distribution that best characterizes her state of knowledge for the variable under
consideration.  This removes some of the shortcomings of the standard triangular distribution
method [Moran, 1999].
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3.   MODELING AND ANALYZING INDIVIDUAL RRAS

There are typically many possible RRAs to a particular source of risk [Hall, 1998].  We
explicitly consider the following three generic RRAs:
1) Accept the risk as is - The project recognizes the existence of the risk but considers it

acceptable to simply monitor it using the standard approach.
2) Modify design - The project immediately implements RRAs such as selecting an

alternate design, modifying the scope, switching vendors, pursuing parallel paths, etc.
3) Obtain additional information - The project invests in additional analysis, testing,

and/or prototyping before implementing costly RRAs. The RRAs are adapted and
implemented as the situation evolves and information is acquired.

We use DTs as the framework for systematically developing and modeling the technical
RRAs3.  The resulting analysis introduces all of the concepts needed for modeling and
analyzing risks involving additional and/or other types of RRAs.

3.1.  The Basic RRA DT

We illustrate the approach by considering a single technical risk R1.  The resulting generic
DT, shown in Figure 4, lays out a simple architecture for developing and evaluating the RRAs
for each individual risk.  It also provides the basic template for dealing with multiple risks, as
detailed in Section 5.

RRAj: Risk Response Action j
Pe: Probability of event e
Fcn:  Conditional density probability distribution for outcomes given event e occurs

Figure 1.  Basic RRA DT template.

                                                          
3 Note that, as discussed in Section 4, we do not use standard DT analysis for optimizing the
RRAs.

Risk Ri
RRAs

Accept Ri
Cost

Ria strikes

R2 doesn't strike

Implement  RRAia
Rib strikes

Rib doesn't strike

Obtain additional Ri data

Ri2 ind_pos. Implement  RRAib

Do nothing
Ric strikes

Ric doesn't strike

Probability: Pe; Impact: Fcn({Pej, Oej})

Ri2 ind_neg.
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Figure 1 follows the standard DT convention and the compact notation described in Appendix
A.  The three decision branches represent the three RRAs identified above.  Each chance
branch may represent either a discrete or a continuous distribution of outcomes depending on
the density probability distribution, Fcn.

3.2.  Quantification of the Basic RRA DT

To proceed with the assessment of the RRAs, the parameters of the RRA DT in Figure 1 need
to be quantified. This is a challenging task that requires experience, the ability to make
educated guesses, and a healthy dose of common sense. The probabilities and consequences
associated with the "Accept risk" and "Implement RRAa" options should be directly obtained
from the domain experts as described in Section 2.  The " Obtain additional data " parameters
depend on the diagnostic capabilities of activities such as analysis, testing, and/or prototyping
which, given finite resources, are not perfect.  There is a tradeoff in deciding how much effort
to expand on obtaining the additional information.  A lower effort costs less, but it results in
data that is less discriminating and a higher probability of a "false negative" that may result in
severe consequences and higher costs later in the project.   The data for the "Obtain additional
data" RRA is determined using Bayes' Formula, as described in Appendix B.

3.2.1.  Illustrative Example: Single-Risk Case
We quantify the parameters in the basic RRA DT  (Figure 1) to reflect the following
properties of realistic RRAs:
- There is a cost associated with each RRA.
- Practical RRAs are not 100% effective.
- There is a cost associated with each residual risk.
- The residual risks are less severe than the initial risks (lower probabilities for the severe

consequence outcomes).

Figure 2 depicts the resulting mathematical model equivalent to the RRA DT in Figure 1.  For
ease of interpretation, each cell is identified with a self-descriptive label and its mathematical
formula. The names of the branches have been abbreviated for legibility.

Accept R1
=Dpv(30%,R1a yes,70%,R1a no)

RR1a
=-10+R1b

R1b
= Dpv(20%,R1b yes,80%,R1b no)

R1b yes
=-Dpv(20%,10,60%,5,20%,2)

R1b no
=0

R1 Data
=-2+Dpv(32.5%,Ind pos,67.5%,Ind neg)

R1a yes
=-Dpv(.2,50,.6,30,.2,20)

R1a no
=0

Ind neg
=Dpv(6.7%,R1c yes,93.3%,R1c no)

R1c yes
=-Dpv(20%,50,60%,30,20%,20)

R1c no
=0

Ind pos
=RRA1b

RRA1b
=-Dpv(.2,25,.6,20,.2,18)

R1 RRAs

Figure 2.  Mathematical Model of RRAs for a Risk R1.
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For completeness and assistance to the interested reader, we provide the detailed quantified
RRA DT in Appendix B, Figure B1.  The choice of a representation is a matter of personal
choice4.

The mathematical model in Figure 2 has been evaluated using Monte Carlo simulation.  The
risk profiles and cumulative risk profiles for the individual RRAs are shown in Figures 3a and
3b, respectively.  The cumulative risk profiles exhibit the step-behavior and multiple values
for a given fractile characteristic of discrete distributions [Markowitz, 1976: 55].  Given that
we are interested in real-world projects, it is reasonable to avoid this ambiguity by
approximating the step-like cumulative risk profile by a monotonic function.  For example,
the curve "mono AR1" in Figure 3b is such an approximation to the curve "Accept R1.   The
differences can be made to be arbitrarily small and do not pose any practical limitations.  The
associated means and variances are compared in Figure 4.  The reported results were obtained
using Decision Pro�.  Essentially identical results were obtained using other commercial
tools5.
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Figure 3a.  Risk Profiles for candidate R1 RRAs.

                                                          
4 The author prefers the mathematical representation to emphasize that the processed decision process is not
based on standard DT analysis.
5 See Section 1.
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Figure 3b.  Cumulative risk profiles for candidate R1 RRAs.

Figure 4.  Means and standard deviations for candidate R1 RRAs.
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4.   DETERMINATION OF EFFICIENT RRA SET

The risk profiles and/or the risk cumulative risk profiles in Figures 3a and 3b provide
complete information and visibility into the range and probability of the possible outcomes of
each RRA.  But mathematically assessing such data is quite complex, and it is an active
research area in many different fields that range from economics to psychology [Kahneman,
Slovic, and Tversky, 1999].   We now examine the applicability of several techniques for
comparing risks and selecting an efficient RRA set.  For illustration purposes we use the data
in Section 3.  There is no loss of generality because the cumulative risk profile characterizes
risk whether made up of one or more individual risks.  In the next section, we apply the
proposed approach to multiple risks and the selection of an efficient RRA set on a project-
wide basis.

4.1.  Comparing Cumulative Risk Profiles

Each cumulative risk profile in Figure 3b provides the probability that the associated RRA
does not exceed a given cost.  For example, the "R1 data' RRA has a 63% probability of
success at a cost of $2K and only a 0.9 % probability of costing $52K on the downside.  Such
data is very valuable because it provides the project manager with the information she needs
to determine how much contingency should be available for a given confidence level or
probability of success.  The importance of such information is supported by empirical studies
[Shapira, 1998] that show that the majority of technical project managers think that risk is not
adequately characterized by its mean value but that it depends more on the magnitude of the
downside distribution of outcomes than the probability.

The three cumulative risk profiles in Figure 3b cross each other.  Intuitively, this means that
no RRA  ("Accept R1", "RRA1a", or "R1 Data") is preferred under all possible selection
criteria. In the language of the field, none of these RRAs exhibits stochastic dominance
[Chapman and Ward, 1997]. The "RRA1a" RRA provides the lowest cost approach for
achieving a probability of success exceeding 80%. This cost ranges from $10K at 80% to
$22K for essentially 100% probability of success.  The two other RRA options cost more to
provide the same probability of success.  The "Accept R1" option provides a 70% probability
of success for free; but, it carries significantly higher risks than the other two RRAs.  The "R1
Data" RRA provides a more balanced approach between risk and a competitive bid.  The
preferred RRA depends on the decision-maker's attitude toward risk; but as we discuss below
there is a preferred solution.

4.2.  Developing the Efficient Contingency Frontier

We use Markowitz' "efficient portfolio selection principles"6 to determine a preferred set of
RRAs.  We paraphrase these principles for technical risk management as follows:
1. A good set of RRAs is more than a long list of individual RRAs. It is a balanced whole,

providing the project with protections and opportunities with respect to a wide range of
contingencies.

                                                          
6 See Section 1
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2. A RRA which is risky or conservative, appropriate or inappropriate, for one project may
be the opposite for another. One must think of selecting the set of RRAs as a whole, not
individual RRAs per se.

3. The efficient RRA set provides the most suitable combination of risk and return.

4. The proper choice among efficient portfolios depends on the willingness and ability of the
project manager to assume risk.

Mathematically speaking, when selecting RRAs from the set of available RRAs there is a
subset of RRAs that provides a given probability of success for the lowest cost. This set of
RRAs determines the lowest contingency necessary to support the acceptable probability of
success.  Its composition changes with the probability of success. We refer to the resulting set
of RRAs as the Efficient RRA Set (ERRAS) and the associated points as the Efficient
Contingency Frontier, ECF.

In this section, we illustrate the development of the ECF for a single risk using the example in
Section 3.  Figure 5 depicts the three RRAs of Figure 3b and the associated ECF.  The points
that lie to the left of the ECF represent RRAs that bear a greater negative impact than
necessary for a given probability.  No RRA has a value or probability represented by a point
below the ECF. To optimize winning the project and successfully carrying it out, project
managers should specify the risk they are willing to take and then use the ECF to determine
the contingency they need.

Figure 5.  Determination of the Efficient Contingency Curve
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4.3.  Applicability of Simple Metrics

Financial stocks can be adequately characterized using a few key statistical parameters such
as the mean and variance [Markowitz, 1976].  But there are significant differences between
financial portfolios and technical project risks that may invalidate the use of identical metrics.
Project cost and schedule risk profiles are typically highly skewed [Schragenheim and
Dettmer, 2001]; applicable statistical data is rarely available; and the focus is on the downside
of individual projects.  Nevertheless, it would be attractive to be able to characterize technical
risk using a few key parameters.  We now examine several metrics for applicability to risk
and contingency management.

4.3.1.  Mean and Standard Deviation
Figure 4 depicts the means (µ) and standard deviations (σ) of the R1 RRAs.  The "Accept R1"
RRA has the smallest mean risk, -$9.0K, and the largest standard deviation, $14.6K.  In
contrast, the "RRA1a" RRA has the largest mean risk, -$11.0K, and the smallest standard
deviation, $2.2K.  Most technical project managers would agree that the "Accept R1" RRA
represents a higher risk than the "RRA1a" RRA.  The mean or the standard deviation, as
standalones, are not appropriate measures of risk.

4.3.2. One-Standard-Deviation Value, µ−σµ−σµ−σµ−σ
4.3.2.1. General Risk Distribution
For normal distributions the value (µ−σ)  has a cumulative probability P(Value <=
µ − σ) = 16%.   When talking risk, this corresponds to a 84% probability of success.  But for
skewed distributions this probability needs to be explicitly calculated.   For example, Figure
3b provides the following values for the R1 RRAs:
- The "Accept R1" RRA has a 27% probability of a cost greater than $24K, P(Value <- 24)

= 27%.
- The "RRA1a" RRA has a 37% probability of a cost greater than $13K P(Value <-13) =

37%.
- The "R1 Data" RRA has a 20% probability of a cost greater than $20K P(Value <- 21) =

20%.
Based on the one-standard-deviation value, the "R1 Data" RRA is preferred to the "Accept
R1" RRA7.  But another discriminator is required to rank the "RRA1a" RRA. This example
illustrates the need for caution when using the one-standard-deviation value as selection
criterion since its use can be dangerous when dealing with skewed distributions.

4.3.2.2.  Applicability of the Central Limit Theorem (CLT)
The CLT [Garvey, 2000: 186] states that " Under certain conditions, the sum of a large
number of independent random variables approaches the normal distribution."  The total risk
is then approximately given by a normal distribution with a mean that is the sum of the
individual means and a variance that is the sum of the individual variances.  The one-
standard-deviation value corresponds to an 84% probability of success and it provides a
reasonable and practical approach for comparing risks and evaluating total project
contingency.

                                                          
7 As specified, loss has a negative value and the more negative the value the greater the loss.   If  V1 < V2 then
V1 corresponds to a greater loss than V2.
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The conditions of the CLT are often satisfied when dealing with multiple risks and total cost.
The project-wide risk consisting of N independent risks with means µi and standard
deviations σi is approximately given by a normal distribution with

µ = Σ µi   and   σ2 = Σ σi
2    ,

where the sums range over i from 1 to N.

The value (µ −  σ) corresponds to an 84% probability of success; i.e.

Prob(|Loss| < |µ −  σ |) = 84% ,

where | X|  denotes the absolute value of X.  The value for any probability of success α  is
simply given by

      Vα = µ - zα*σ ,

where zα is the z-value from the standard normal distribution [Shaikh, 1998].

When the CLT is applicable, it can be used to greatly simplify the computations.  But, caution
is required and the analysts should ensure that the assumptions are reasonable.

4.3.3.  Other Metrics
Technical project managers who are highly risk-averse tend to focus or worst-case scenarios
or select the option with the lowest risk at a high confidence level.  The 95th percentile values
(5% probability of a worse outcome) for the three RRAs in Figure 3b are as follows:  ~ -$30K
for the "Accept R1" RRA; ~ -$15K for the "RRA1a" RRA; and ~ -$22K for the "R1 Data"
RRA.  Based on this criterion, the  "RRA1a" RRA is preferred.  Comparing different risks
using a single point on the cumulative risk profiles is not a robust method and does not
provide a balanced consideration of all the possible outcomes.

Risk aversion is often modeled using a utility function.  But, empirical studies indicate that
most technical managers are unlikely to use such data for decision-making under
risk/uncertainty.  To quote [Shapira, 1995: 51]: "Ideally, it would be an advantage for
managers if risk could be described in one number.  However, acknowledging the many
facets of risk, most felt that transforming a multidimensional phenomenon to one number
might not be adequate or helpful."

4.4.  Limitations of Standard DT Analysis

Standard DT analysis selects the decision branches with the highest or lowest expected value.
Although each of the potential outcomes is explicitly modeled in the DT, this detailed
information is lost when folding-back and averaging the data.  The output is therefore
inappropriate for selecting RRAs, where the preferred option may depend on the decision-
maker’s attitude towards risk.  Theoretically, a utility function may be developed to addresses
this concern. But as indicated above, this is not likely to be used by technical managers
making for decision making under risk/uncertainty.
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5.  DEALING WITH MULTIPLE RISKS

We now build on the previous sections to deal with projects that face multiple risks and
require the implementation of multiple RRAs.  The objective is to determine the combination
of RRAs that either (1) maximizes the probability of success for a given total project cost, or
(2) minimizes the total project cost for a given probability of success.   The Efficient Total
Project RRA Set (ETPRRAS) includes multiple RRAs, and the Total Project ECF (TPECF)
specifies the Total Project Cost Contingency (TPCC).

Formally, the problem can be stated as follows:
Given a project with multiple individual risks, Ri where (i= 1, …N), and associated RRAs,
RRAij where (j =1,2,…,N for a given Ri), determine the combination of RRAs, {RRA1j,
RRA2k,…,RRANl}, that either (1) maximizes the probability of success for a given total
project cost, or (2) minimizes the total project cost for a given probability of success.

In Section 5.1 we first illustrate the approach using a concrete example of a project with two
risks.  The procedure is then generalized to determine the efficient RRA set for projects with
any number of risks and RRAs.

5.1.  Illustrative Example: Two-Risk Case

We illustrate the proposed approach and nature of the ETPRRAS by a small project with two
technical risks, R1 and R2, and the following assumptions:
1. Risks R1 and R2 are statistically independent.  There is no correlation between them.
2. The three generic RRAs defined in Section 3 are options for each risk.
3. The outcome values depend on the RRAs.
4. The outcome of R1 does not affect the outcome of R2 and vice versa.
5. The R1 data and R2 data are provided in Section 3 and Appendix B.2, respectively.

There are nine possible Total Project RRAs (TPRRA) given by the set of combinations
{RRA1i, RRA2j} where i and j =1,2,3 corresponding to the three possible individual RRAs
(Accept Ri, RRAi, Ri Data).  The TPRRAs, denoted by JRk where k=1,…,9, are
mathematically modeled as shown in Figure 6.
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Joint R1.R2 RRAs
=(JR1,JR2,JR3,JR4,JR5,JR6,JR7,JR8,JR9)

JR1
=Accept_R1+Accept_R2

JR2
J=RRA1a+RRA2a

JR3
=R1_Data+R2_Data

JR4
=Accept_R1+RRA2a

JR5
=Accept_R1+R2_Data

JR6
=RRA1a+Accept_R2

JR7
=RRA1a+R2_Data

JR8
=R1_Data+Accept_R2

JR9
=R1_Data+RRA2a

:  Pointers to individual RRAs

Figure 6.  Mathematical model for the case of two risks

As depicted in Figure 6, the residual risk associated with each joint RRA is quantitatively
given by a probability distribution that is the statistical sum of the contributing risk
probability distributions.  Since we assume that there is no correlation among the individual
risks, these sums are routinely computed using Monte Carlo simulation that independently
samples the individual distributions.   Appendix C briefly outlines the calculus of discrete
probability distributions [Kaplan, 1981] as another approach for solving and/or viewing the
problem.

The techniques of Sections 2, 3 and 4 are directly applicable to the total project risk, as
summarized below:
1. Each TPRRA in Figure 6 is characterized in terms a cumulative risk profile and

associated statistics.
2. The composition of the ETPRRAS varies with the probability of success and defines the

TPECF.
3. The TPECF determines the lowest TPCC for a given probability of success.

Table I summarizes a few key parameters including the mean, standard deviation, selected
outcomes, and the TPECF.  Figure 7 depicts the cumulative risk profiles on a common graph.
Given the need for conciseness and the resulting crowded appearance, it is intended for
illustration purposes rather than detail.  In full size and color, the graphical representation
provides artistic and interesting curves that capture the complexity of the risk profiles and
provide information beyond the data in Table I.  But as discussed below, the data in Table I is
adequate to explicitly characterize and compare the various TPRRAs.
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Table I.  Summary Statistics for the Case of Two Risks

Total Project RRA Cost  $K
         Probability of Success

ID* Description Mean Std Dev Min Max 50% 80% 95%
JR1 AR1.AR2 15.1 16.9 0.0 70.0 8.0 30.1 50.0
JR2 RR1.RR2 15.9 3.3 14.0 34.0 14.0 19.0 24.0
JR3 R1Data.R2Data 14.7 11.7 3.0 73.0 8.0 27.2 33.0
JR4 AR1.R2Data 14.2 16.0 1.0 71.0 6.0 31.0 51.0
JR5 AR1.RR2 14.4 15.9 4.0 64.0 4.0 34.4 54.0
JR6 RR1.AR2 16.6 6.8 10.0 40.0 17.0 19.8 30.0
JR7 RR1.R2data 15.7 4.3 11.0 41.0 16.0 17.6 24.0
JR8 R1Data.AR2 15.7 12.9 2.0 72.0 10.0 27.2 40.0
JR9 R1Data.RR2 15.0 11.3 6.0 66.0 6.0 26.0 31.0

ECF 14.2 3.3 0.0 34.0 4.0 17.6 24.0
ECF RRA JR4 JR2 JR1 JR2 JR5 JR7 JR2, JR7

* Defined in Figure 6
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Figure 7.  Cumulative risk profiles and ECF for the case of two risks

The following observations can be made based on Table I:
1. No TPRRA dominates for all possible outcomes.  The composition of the efficient RRA

set varies with the probability of success.
2. JR4 has the lowest mean value ($14.2K) and one of the largest standard deviation

($16.0K).  Most project managers would not select it as the preferred option.
3. JR7 dominates for probabilities of success between 80%  ($17.6K) and 95% ($24K).
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4. JR2 dominates for probabilities of success greater than 95% and has an estimated
maximum cost of $34.0K.

5. The cost differentials among the different strategies are significant.  For example, JR7
provides a 80% probability of success for $17.6K while the corresponding cost with JR5
is $34.4K.  The cost-benefit of judicious risk management increases with increased
probability of success.

6. Hybrid options such as JR7 are worth further consideration.  Successful project managers
often favor such options, where additional data is pursued for some of the risks.

7. For all of the above RRAs, the value given by the sum of the mean and standard deviation
corresponds to approximately an 80% probability of success.  We find this surprising
because we do expect the CLT to be applicable under the assumed conditions.  But this is
also very interesting because it suggests that the closed form risk value approximation
presented in Section 4 may have wider applicability than one might anticipate.  The
analysis may simplify as the risks increase in number.

In conclusion, the proposed approach is capable of providing much detailed and valuable
information.  But the models and input data depend on engineering judgement and we stress
the need to use the analysis judiciously.  The challenge is in modeling and quantifying the
project risks and RRAs; the computations can be routinely performed using the commercially
available software identified in Section 1.

5.2. Workflow for Determining the Efficient RRA Set and Optimal Contingency

Figure 8 depicts the workflow for the method developed in this paper.  The associated
activities can be categorized as follows:
1. Start with the criteria for selecting the RRAs.  These may include an acceptable

probability of success or Total Project Cost (TPC) and Confidence Level (CL). (Activity
A0).

2. Identify, quantify, and prioritize all technical risks. (Activities A1 - A3).
3. Select risks for further analysis. (Activity A4).
4. Develop, model, and quantify the potential individual RRAs. (Activities A5 - A6).
5. Develop, model, and quantify the potential TPRRAs. (Activities A7 - A9).
6. Determine ETPRRAS, TPECF, and optimal TPCC. (Activities A10 - A11).
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&

A1

Identify all
technical risks

A2

Qualitatively
assess all

technical risks

A3

Prioritize all
technical risks

A4

Select risks for
further analysis

A5

Identify potential
individual RRAs
for selected risks

A6

Model potential
individual RRAs
for selected risks

&

A9

Quantify potential
TPRRAs

A8

Model potential
TPRRAs
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Develop potential
TPRRAs

&

Selection criteria
- Probability of success
- Cost & confidence level
  A0

A10
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efficient RRA set

and ECF
A11
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TPC contingency

Optimal
Contingency

Available
information

Figure 8.  Workflow for determining efficient RRA set and optimal contingency

When first implementing the proposed approach, it is important to heed the following words:
- "… the more convenient, more natural set type of analysis is a logical first step in the

formal analysis of portfolios." [Markowitz, 1976: 281]
- "After a point, complexity adds work without appreciably increasing the value of the

analysis." [Markowitz, 1976: 101]
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6.  IMPLICATIONS FOR RISK AND CONTINGENCY MANAGEMENT

We have built on Markowitz' portfolio selection ideas [Markowitz, 1976] a systematic and
practical approach for effectively managing project technical risks and achieve either (1) the
highest probability of success for a given cost, or (2) achieve a given probability of success
for the lowest cost contingency.  It provides a framework for answering the following
important risk management questions:
1. How much contingency should be available to insure the acceptable probability of

success?
2. What set or combination of individual RRAs provides the acceptable probability of

success for the lowest cost?
3. What are the risk profiles (probability Vs consequence) of the candidate TPRRAs?

The answers have significant implications for efficiently managing project risks and cost
contingencies:
1. For every level of risk there is a combination of individual RRAs, the ETPRRAS, that

provides the acceptable probability of success for the lowest cost.  The composition of
this set varies with probability and it defines the ECF or optimal total project contingency.

2. It is important to explicitly consider risk at the project-wide level.  The total project
efficient RRA set is not simply the combination of the individual efficient RRAs.

3. Selecting the total project efficient RRA set should be the primary objective of risk
management.  Higher risk should be viewed as a trade-off in trying to achieve a higher
probability of project win and/or higher profit.

4. The mean and variance do not fully characterize risk, and their use may in some cases
lead to wrong decisions. Decision-makers need additional data that provides greater
visibility into the individual and total project risk profiles.

5. The ability to determine the ETPRRAS empowers the decision-maker to manage risk and
thereby achieve the highest probability of success for a given contingency.

6. TPCC should be held centrally and managed at the project-wide level.  This principle is
essential to successfully manage the TPC  [Kujawski, 2001].  Although it has not been
explicitly identified in the analysis, it is an integral element of the proposed approach.

In conclusion, the proposed approach is based on powerful concepts that apply to areas
beyond portfolio selection.   For example, they have recently been extended to petroleum
exploration and production [Ball and Savage, 1999].   The project manager who properly
implements them is more likely to have a successful project at a lower cost.  The challenges
to the team are:
- Adequately identify and quantify all the risks.
- Identify and deal with potential sources of correlation among the risk elements.
- Develop and quantify the individual RRA options.
- Adopt the approach and associated thinking.
- Judiciously use the models.
- Treat risk management as an integral part of project management.
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APPENDIX A: MODELING REPRESENTATIONS AND NOTATION

Figure 9 depicts the modeling representations discussed in Section 2:
4. Figure 9a. Standard Event Tree (ET) with each branch representing an individual

outcome.
5.  Figure 9b.  A probability distribution is associated with each branch in the ET.  In the

case shown, the single branch with the specified discrete distribution function replaces the
top four branches in Figure 9a.

6. Figure 9c - The ET is explicitly modeled using specialized software such as
DecisionPro� or a spreadsheet such as Excel�.

Event 1 occurs

Very high outcome
Value = -100

High outcome
-60

Medium outcome
-30

Low outcome
-5

Event 1 does not occur
Value = 0

P=
0

.3

P= .1

.2

.4

.3

.7

(a) Standard representation

Event 1 occurs
         P = 0.3

Outcomes
Dpv (0.1,-100, 0.2,-60, 0.4,-30, 0.3,-5)

Event 1 does not occur
P= 0.7   Value = 0

(b) Representation using discrete distribution function

outcomes

Medium
= -30

Low
= -5

    Very high
  = -100

     High
= - 60

Event 1 outcomes

       Success
      = 0

= Disc({.1, Very high }, {.2, High }, {.4, Medium }, {.3, Low })

Event 1 occurs
P= 0.7

Event 1doesn't occur
P= 0.3

(c) Spreadsheet model

Figure 9. Example of an event tree using different representations
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For completeness, we briefly summarize the information content of Figure 9.
1. The ET in Figure 9a has five possible outcomes indicated by the five end branches.  These

outcomes arise as follows:
a) "Event 1" has a 30% probability of occurring and a 70% probability of not occurring.
b) Given that "event 1" occurs there are four possible outcomes with the following

conditional probabilities:
- 10% chance of a "Very high outcome" with a value -100
- 20% chance of a "High outcome" with a value -60
- 40% chance of a "Medium outcome" with a value -30
- 30% chance of a "Low outcome" with a value -5

2. The ET in Figure 9a is equivalent to the following discrete probability distribution:

Outcome 0 -5 -30 -60 -100
Probability 0.7 0.06 0.12 0.09 0.03

Note: The probability of each outcome is obtained by multiplying the probability that the
event is realized by the conditional probability of the outcome given that event.

3. We denote the discrete distribution function with n possible outcomes with value Vi and
probability Pi for outcome i by Dpv(P1,V1, P2, V2,…, Pn,Vn).

4. Use of the discrete distribution function provides a convenient representation of a chance
node and its associated outcome branches, as shown in Figure 9b.  It simplifies the ET (or
DT) and provides a framework for modeling outcomes with continuous distributions.

5. ETs can also be modeled using a standard spreadsheet as shown in Figure 9c.
Spreadsheet models combined with Monte Carlo simulation provide a convenient
framework for dealing with complex trees where the values of branches are defined by
probability distribution functions. The cells in Figure 9c contain formulas that are
equivalent to the corresponding node and branch in the ET in Figure 9a.

Commercially available software tools (DecisionPro�, PrecisionTree� with @Risk,
Insight.xla�, Crystall Ball�, etc) can be used to assist in the development and analysis of the
above risk models.
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APPENDIX B: ADDITIONAL DATA FOR ILLUSTRATIVE EXAMPLES

B.1.  R1 RRAS

B.1.1 Detailed RRA DT
Figure 10 depicts the standard DT representation for the R1 RRAs described in Section 3.

Outcomes
Prob. Value

6% -50

18% -30

6% -20
70% 0

4% -20

12% -15
4% -12

80% 0

6.5% -27

19.5% -22

6.5% -20
0.9% -52

2.7% -32
0.9% -22

63.0% -2

R1 RRAs

Accept R1
0

R1a str ikes
0

R1a high
-50
-50

R1a ML
-30

R1a low
-20

R1a no
-0

RRA1
-10

R1b strikes
0

R1b high
-10

R2b ML
-5

R1b low
-2

R2b no
0

R1 data
-2

R1 ind_pos.
0

RRA1c
0

R1c high
-25

R1c ML
-20

R1c low
-18

R2 ind_neg
0

Do nothing
0

R1c str ikes
0

R1cc high
-50

R1cc ML
-30

R1cc low
-20

R1c no
0

30%

20%

60%

 20%70%

 20%

20%

60%

 20% 80%

 32.5%

20%

60%

 20%

  67.5%

6.7%

20%

60%

 20% 93.3%

Figure 10.  R1 RRAs, standard DT representation

Decision nodes and chance nodes are depicted as squares and circles, respectively.  The
branches that originate with decision nodes represent the available RRAs. The branches that
originate with chance nodes represent the possible probabilistic outcomes.  Each branch has a
probability and cost value associated it. These values are conditional on the RRA.  To
differentiate among the three RRAs, we explicitly denote the associated risks as R1a, R1b,
and R1c.

The probabilities of the outcomes associated with each RRA sum to 1.  This is an important
check on the validity of any RRA DT model.  The three RRAs are mutually exclusive, and
each has its own and independent existence.  Decision nodes are deterministic; only one of
RRAs gets implemented for each risk.  Once a RRA is implemented, only the associated
outcomes can be realized and the sum of their probabilities must equal 1.  To characterize
each RRA, the subtree associated with each RRA needs to be analyzed individually.  As it
should be, the risk profile and cumulative risk profile for each RRA are identical to those
shown in Figures 3a and 3b, respectively.

B.1.2. Quantification of the "R1 data" RRA
As indicated in Section 3, the " R1data " RRA requires additional analysis beyond elicitation
of the data from the domain experts. The domain experts normally have information on the
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prior probabilities of R1 and the effectiveness of the proposed testing and/or analysis.   The
data assumed for the "R1 data" RRA is shown in Figure 11a.

The events in Figure 11a, however, appear in the reverse order of the events in the tree in
Figure 10.  Bayes' Formula [Haimes, 1998] provides a tool to calculate the probabilities
needed as input in Figure 10.  The resulting analysis is presented in Figure 11b.

R1 prior info

R1 indicators posit
R1strikes_pos

R1 indicators negative

R1 indicators neg
R1 indicators positiv

R1 indicators negativ

30%
85%

15%%

70%
10%

90%

Figure 11a.  Event tree based on prior information

R1 obtain data

R1 indicators pos.
R1 strikes_pos                    Outcome #1

R1 doesn't strike_pos          Outcome #2

R1 indicators neg
R1 strikes_neg                    Outcome #3

R1 doesn't strike_neg          Outcome #4

32.5%
78.5%

21.5%

67.5%
6.7%

93.3%

Figure 11b.  "Reversed" event tree

The information obtained during the risk reduction phase may be erroneous and may result in
any of the four outcomes shown in Figure 11.b.   Note that the project team gets kudos only
under outcome #4.  Under outcome # 3, the team is blamed for inadequate risk management.
Under outcomes #1 and #2, it is usually very difficult to convince management of the cost-
benefit of the implemented RRAs.

B.2.  R2 RRAs Data
The data for the R2 RRAs is summarized in the following Figures:
- Figure 12 depicts the quantified mathematical model
- Figure 13 compares the means and variances of the three RRAs
- Figure 14 depicts the cumulative risk profiles and the associated ECF.
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R2 RRAs

Accept R2
        =Dpv(60%,R2a yes,40%,R2a no)

R2a yes
    =-Dpv(20%,20,60%,8,20%,2)

R2a no
R2a no=0

RR2a
RR2a=-4+R2b

R2b
    =Dpv(15%,R2b yes,85%,R2b no)

R2b yes
   =-Dpv(20%,10,60%,5,20%,2)

R2b no
      =0

R2  Data
R2  Data=-1+Dpv(55%,R2 ind pos,45%,R2 ind neg)

R2 ind pos
      =RRA2c

RRA2c
     =-Dpv(20%,6,60%,5,20%,4)

R2 ind neg
      =Dpv(20%,R2c yes,80%,R2c no)

R2c yes
    =-Dpv(20%,20,60%,8,20%,2)

R2c no
     =0

Figure 12.  Quantified mathematical model for R2 RRAs

Figure 13.  Means and standard deviations for R2 RRAs
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Figure 14.  Cumulative risk profiles and ECF for R2 RRAs
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APPENDIX C: DISCRETE PROBABILITY DISTRIBUTION CALCULUS

We revisit the example in Section 5 using the calculus of discrete probability distributions
[Kaplan, 1981].  This approach is instructive and provides additional insight into the
probabilistic summing of discrete risks.  We detail the analysis of the joint RRA, (Accept R1
and Accept R2).

The joint RRA, (Accept R1and Accept R2), has 16 possible outcomes with probabilities and
values given by:

(Accept R1 and Accept R2) =  {(Pi(1), Vi(1)) + (Pj(2), Vj(2))}
        = {Pi(1)*Pj(2), Vi(1) + Vj(2)}

i =1, 4  j =1,4 corresponding to the 4 possible individual outcomes (High, ML, Low,
None).

Table II provides the resulting risk profile.

Table II.  Risk Profile for Joint RRA, (Accept R1 and Accept R2)

R1 no R1 low R1 ML R1 high

R2 no (28%, 0)* (2%, -20) (7%, -30) (2%, -50)

R2 low (8%, -2) (1%, -22) (2%, -32) (1%, -52)

R2 ML (25%, -8) (2%, -28) (6%, -38) (2%, -58)

R2 high (8%, -20) (1%, -40) (2%, -50) (1%, -70)
*(Probability, Value $K)
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